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ABSTRACT (ZUSAMMENFASSUNG) 

In coal gasification, oxidation and sulfidization cause serious 

pipe corrosion. This paper attempts to determine the feasibility of 

reducing such corrosion by injecting steam at pipe entry to modify the 

boundary-layer gas composition along pipe walls. The injection will 

form a thin layer on the inner wall, preventing, for a time, contact 

with the corrosive gases. (Turbulence will eventually force diffusion 

through the protective layer.) The gas products are assumed to be 

hydrogen sulfide and steam. The Method of Integral Relations is used 

to obtain the numerical solutions to the governing equations. With 

several different injectant lengths and velocities, the concentration 

of H2S along the pipe wall is calculated and is found low enough to 

prevent corrosion. 
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Section I: Introduction 

In the production of synthetic natural gas (SNG) from coal, the 

environment in a gasifier contains hydrogen, water, carbon dioxide, 

carbon monoxide, methane and hydrogen sulfide (see Table 1). The 

operating temperature is about 1000°C in all three typical coal gasi

fication processes. The material for all the metallic internal compo

nents of the gasifier must be corrosion resistant at temperatures 

ranging from 700°C to 1000°C. We shall take the pipe material to be 

310 stainless steel, because this steel is used in existing coal 

gasifiers. Since hydrogen sulfide is the most corrosive gas and steam 

is the dominant gas in the pipe mixture, these two gases are considered 

to be the only fluid components in the mixture. 

There are many ways to inject a protective layer of water along the 

inner side of pipes, but only two are considered here: (1) water is 

initially injected at the leading edge in a direction parallel to the 

axis of the pipe; (2) water is injected at the leading edge for a 

finite length L in a direction normal to the axis of the pipe. In both 

cases, the amount of injectant can be small enough to ensure that the 

contents of the mixture will not be changed greatly. 

The effect of strong (i.e., non-viscous) injection on boundary 

layer characteristics has previously been investigated in [1] and [2]. 

These theories are adapted to the present problem, to determine the 

shape of the interface between the pipe flow and the injectant. 

Viscous diffusion about this interface is then calculated by extending 

the viscous mixing theory of Chapman [3]. 
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Section 2: Parallel Injection 

In this method, water is injected parallel to the axis of a 

straight circular pipe. To simulate the problem, a two-dimensional 

free shear model has been used (see Fig. 1). In the upper half-plane, 

the velocity of the gas mixture is 1524 em/sec. In the lower half-

plane, the velocity of the injectant is taken to be 75 em/sec and the 

temperature is taken to be 300°C, which is the saturated water 

temperature at 68 atm pressure. 

The following assumptions are made: 

1) The pipe wall in the lower half-plane does not affect the 

boundary layer growth. 

2) The flow is laminar and steady. 

3) Pr = 1, where Pr"" v/a, a is the heat diffusivity, and v is the 

kinematic viscosity of the gas mixture. 

4) Le = 1, where Le = 0/a and D is the mass diffusion coefficient. 

. - - w 
5) ~ = C(T/T00 ) , where C = 1 and W = 1 in the subsonic case. 

lloo 

The viscosity of the gas mixture behaves as ~~~ = T/T00 , where 

~ is the dynamic viscosity and T is the temperature of the gas 

mixture, and the subscript denotes the free stream value. 

6) The specific heat coefficient, cp, is constant. 

7) The ideal gas 1 aw holds. 

Governing Equations 

Since the Reynolds number is high, the boundary layer equations can 

be applied: 



~ +~apv = 0 , 
ax ay 

-- au -- au a 
pU -. + pV- =-- -ax ay ay 

3 

~:n 
:y k(:!) a(cPT) __ a(cPT) 

pU + pV --'---

ax ay 

-- am -- am a ~-1'1 am~ pU - + pV -: :::: -: pu -: 
ax ay ay ay. 

( 2.1) 

(2.2) 

(2.3) 

(2.4) 

In the above, u and v are the velocity components in the x and y 

directions, respectively, p is the density, m is the mass concentration 

of each species, and k is the thermal conductivity. With the assump

tions that Pr = Le = 1 and cp = constant, the energy equation and 

species equation can be rewritten as: 

- - aT -- aT . a (;-; aayT ) p U- + pV- =- ,. 
ax ay ay 

-- am -- am a ~- am ) 
pU - + pV -: = -: JJ -: 

ax ay ay ay 

Introduce the non-dimensional quantities: 

u T T 
X 

X u - - =r 
Uoo Teo 

p = pfp )J :::: ~~~ m = m 
00 00 

(2.5a) 

(2.5.b) 

(2.6) 
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_l (~:L) l/2 , v e~L) 1/2 
y - L v =-

u 00 

where L is a reference length. The governing equations can be written 

as: 

.L.( P u ) + _a ( P v ) = 0 ax ay 

u~ + au a ( au) 
P ax pVay = ay llay 

The boundary conditions are: 

at y = oo , u = 1 

at y = - oo , u = 0. 05 

(2. 7) 

(2 .8) 

(2.9) 

(2.10) 

T = 1 m = 0.02; 
(2.11) 

T = 0.45 m = 0 

Under the assumption Pr = 1, when applied to the boundary layer 

equations (as pointed out in [4]), the energy equation can be decoupled 

from the other equations. Using Crocco's relation, T is a function of 

u only, and T (u) = Au + B, where A and B are constants determined from 

the boundary conditions. Similarly, the species equation can also be 

decoupled by the assumption Le = 1 and can be written as m(u) = 

A'u + B', where A' and B' are constants determined by the boundary 

conditions. 

Applying the boundary conditions (2.11), we get 
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T (u) = 0.5684 u + 0.4316 (2.12a) 

m (u) = 0.0211 u - 0.00105 (2.12b) 

Once the velocity profile has been determined, the temperature profile 

and mass concentration profile can also be solved. 

To obtain the velocity profile, the continuity equation and 

momentum equation were solved by the Method of Integral Relations [5]. 

At first the equations were transformed into incompressible form. by 

the Stewartson transformation: 

~ = ex, c = 1 for the subsonic case; 

n = r y p dy ' u = u ' Jl = Jl 
}a 

p = p , pV = Vc - U(an/ax)Y 

(2.13) 

Since ll = T, the ideal gas law gives pT = 1. The continuity equation 

and momentum equation become: 

~+21-o (2.14) 
a~ an -

Let f(U) be a weighting function. Mutiply equation (2.14) by f(U) and 

equation (2.15) by f' (U), and add the result. We obtain: 



2 
l-(Uf) + L(Vf) = f'a ~ 
a~ an an 

6 

The equation is now solved separately in the two regions: one is in 

the upper half-plane, and the other in the lower half-plane. 

For the upper half plane, we integrate with respect to n from 

0 to oo. We obtain: 

., Loo n=oo Loo , .,20 
--
0 fUdn + fV = f (U) ~ dn 
a~ 0 n=O 0 an 

(2.16) 

Since V = 0 at n = 0, U = 1 at n = oo, and f(1) = 0, the second term on 

the left-hand side of the above equation becomes zero. We change the 

variable of integration from n to U and integrate the term on the 

right-hand side of the equation by parts. We obtain: 

L (1 
a~ ~. 

0 

where 

U = U(n=O) 
0 

Since at n=oo, U=1 

- _1_ 9 1-U 

(1::::00 therefore 

To avoid a singularity in the equation, we may choose 

(2.17) 
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f(U) - (1-U) 

1-U0 For the first approximation, we take f(U) = 1 - U and 9 = ~0(~) 

where 

Substitution in equation (2.17) gives 
1 I 1 

~ f (1-U )9 UdU = f (U) - 1 
a~ uo o o 9 uo 9o 

Since the problem is similar, u0 =constant, and 

2 d9o 2 
(1-Uo) (1-Uo) d[ = 9o (2 .18) 

A A 

For the lower half-plane, we use coordinates ~' n, where n = -n, and 

put a circumflex (A) above each variable. For the first approximation, 

we take: 

Af(U") A :::: u - 0.05 

Similar to the procedures for the upper half-plane, we obtain: 

-a[o.os AAA f 1

(U) 
(U0-0.05 )90UdU = -A--'--"'-

a~ A Au 
u 9 0 0 
0 A 

0.05 -1 

" 2 "2 d9o -2 (u0-o.os)(0.05 -u0) ~ = ~ 
90 

(2.19) 

Applying the matching conditions at n = n = 0, we obtain: 
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Solving numerically for u0, we find u0 = 0.6274. From similarity we 

have: 

eo= eat; 1/2 

eo = sat; 1/2 

where a0 and a0 are constants. Equation (2.18) then becomes: 

or 

Recalling 

n = .J; y pdy , p T = 1 and U = u 

we have: 

,(Ydn .ru 
y =~ 0 =JU eTdU 

0 

1/2 r u 
Y = aaO-Uo) l; J' 

uo 
AU+B dU 

1-U 

- 1/2 

~1;2 • Y CooJ • 1.5678 [0.5684 U - tn(l-u) - 1.344] . 

00 



9 

Similarly, equation (2.20) becomes: 

A 112 A if:u AU+B Y = ~ a0(u0-0.05) dU U-0.05 
uo 

(2. 21) 

or 
- 1/2 

y c00.J = 2.4299 [0.5684u + 0.45~n(u-0.05)-0.1095] (2.22) 

00 

With the velocity profile known, the H2S concentration profile can 

be found from equations (2.11) and (2.12). Same calculations were 

performed with injectant velocity equal to 500 em/sec. Results are 

plotted in Figure 2 and Figure 3. 

Define the hydrodynamic boundary layer thickness of the lower half

plane as that where the mass concentration of H2S is 0.0002, which 

is 99% smaller than that in the coal gasification mixture. Outside the 

boundary layer, in the lower half-plane, the H2S concentration is 

even smaller, and is considered to be low enough to prevent corrosion 

of the pipes. Then we can say that the pipes are free from corrosion 

from the entry to the point where the boundary layer thickness meets 

the wa 11. 

For a large pipe diameter, for example, 90 em, we can inject large 

amounts of steam. For a width of injection equal to 1 em and an 

injection velocity equal to 75 em/sec, we find that the boundary layer 

hits the wall at X = 19.4 meters. Therefore, the pipe is protected 

from corrosion for the initial length of 19.4 m. For an injection 

velocity equal to 500 em/sec and a width of injection equal to 1 em, 
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we find that the initial 31.9 m of the pipe is protected from 

corrosion. For 90-cm-diameter pipes, Re is high and the flow is 

turbulent. The turbulent model will reduce the protected length 

considerably. 

The usual diameter of pipes having serious corrosion in the coal 

gasification process is 5 em. Since we want to inject less than 1% of 

volume of steam into the pipes, we choose an injection velocity of 

500 em/sec and width of injection of 0.3 em, resulting in the initial 

28.7 em of the pipe being protected from corrosion. 

Section III: NORMAL INJECTION 

In this section, we discuss injecting water normal to the axis of 

a straight circular pipe. A uniform strong injection is applied over 

a finite entry length of the pipe. To simplify the problem, the 

circumferential effect is neglected. A two-dimensional model is used 

to simulate the problem (see Figure 4). It has been pointed out in [2] 

that, for strong injection, v0;u
00

>>Re112, and the injectant layer 

is inviscid. The viscous effect is confined to a thin layer along the 

dividing streamline of the injectant and the coal gasification gas 

mixture. In the first part of this section, we find the dividing 

streamline, using an inviscid model. In the second part, we find the 

mass diffusion of H2S across the dividing streamline by means of the 

Method of Integral Relations. 

Inviscid Analysis 

To find the dividing streamline, a model based on uniform flow over 

a line source is used to analyze the problem (see Figure 5). A line 
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source of strength cr is located between s = 0 and s = L, where L is the 

injection length and s is measured along the streamline. The amount 

of water injected must be equal to the amount of water coming out from 

one side of the line source. So cr = 2V 0, where v0 is injection 

velocity. By means of the complex variable z = s + it, where t is the 

transverse coordinate, the complex velocity is given by: 

L I 

u(z) ~ iv(z) = U +1 !!._2 ds 1 

oo 0 'If (z-s ) 
{3.1) 

(3.2) 

(3.3) 

The velocity components of the gas mixture on the dividing streamline 

are: u(s,8) = ~0 £n [ s2+~2 2]+ U oo 

'If (s-L) +o 

v 
v(s,o) = _Q (tan-1 ~- tan-1 s-L) 

'If 0 0 

(3.4) 

(3.5) 

where o is the height of the dividing streamline. 

S. do V(s,o) h 
1nce dS = U(s,o) , we ave: 

(3.6) 

We know that far downstream, the velocity is uniform and equal to U
00

• 

Hence by conservation of mass, we have o = V
0

L/U
00

• With this as the 
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initial condition, the dividing streamline, o(s), can be found by 

integrating equation (3.6) backward along s. The velocity of the gas 

mixture ul along the dividing streamline is given by 

Across the dividing streamline, the pressure is continuous, but the 

velocity and the H2s concentration are discontinuous. Applying 

Bernoulli 1 s equation on the dividing streamline, we find the velocity 

of the injectant u2 is: 

(3. 7) 

Mixing Layer Analysis 

To solve for the mass diffusion across the dividing streamline, the 

following assumptions have been made: 

1) Laminar flow. 

2) Steady state. 

3) Le = 1. 

4) Pr = 1. 

5) Since the concentration of H2S is small in the mixture, we 

can assume the gas constant R and the specific heats cp and 

cv are all constant in the mixing layer. 
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Use Cartesian coordinates x and y; x is the distance along the dividing 

streamline andy is the distance normal to it. The basic governing 

boundary layer equations are as follows: 

a (pu) + L (5v) = o ax ay (3.8) 

-pU ~ + PTJ au =: - dpe + !__ ,- ~) 
ax ay dx ay J.1 ay (3.9) 

-- a ( 1 -2) -- a ( 1 -2) pU -- c T + - u + pV -- c T + - u ax p 2 ay p 2 

=- J.l- cT+-u a [- a ( 1 -2 )J 
ay ay p 2 (3.10) 

- - -
-- ~ + -- am _ !__ (-D am) 
pU ax pV ay - ay P ay (3.11) 

where 

Pe = p RT 
00 

The boundary conditions are: 

u ---~ u1 as y ---~ oo 

u ---~ u2 as y ---~ - 00 • 

We solve the above equations by the Method of Integral Relations. We 

solve separately the region above the dividing streamline and the 

region below it, using the matching conditions along it as boundary 

conditions. 

For the upper region, apply the Dorodnitsyn transformation: 



u 
u =u 

1 

14 

(3.12) 

Here subscript "s" represents quantities at the stagnation point and 

~ v2m = cpTs, while L is some reference length. 

The resulting governing equations become: 

au au ( 2) u -- + v-- = a 1-h-u 
a~ an 

2 
ulb_ + vlb_ = !.1!. 
a~ an an2 

uam + vi!!!. = a
2
m 

a~ an an2 

where 

(3.13) 

(3.14) 

(3.15) 

(3.16) 

Let f(u) and g(u) be weighting functions. Multiply equation (3.13) by 

f(u) and equation (3.14) by f•(u), and add the result. We obtain: 
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a a 1 2 ' a 2u --(uf) + --(fv) = af (1-h-u ) + f ---
at; an an2 

Multiply equation (3.13) by hg(u), equation (3.14) by hg 1 (u), 

equation (3.15) by g(u), and add the result. We obtain: 

(3.17) 

a a 2 1 a2u 1 a2h 
37 (hug) + a;;(hvg) = a(l-h-u )hg (u) + - 2 hg (u) + g - 2 . (3.18) 

"' an an 

Integrate the above three equations with respect to n from 0 to oo and 

then change the variable of integration from n to u. We get: 

(3.20) 

a/::_( 
1 

hugedu ::: af 
1 

(l-u2)hg I 9dU - (3( 
1 

h2g I 9dU + ..4,g I ~ 
as) u J u 1 u e 0 

0 0 0 ( 3. 21) 

-1·11 (. u I ah) ah 1 il I ah 1 n = oo - - \9 h+g - du + .9. - - g - =-clu-hvg 
u e au e au u u au e n = 0 0 0 0 

f l l r l 2 I > r 1 I 1 1 1 
~t; mugedu = ~. (1-u )mg edu - ~. mhg edu + e mg 

·ua uo ua uo 
(3.22) 

1 1~ I am 1 - g au ~u - mvg 
uo uo 

n = oo 

f l 1 ( " 1 am) o am - - g m+g - du + ~ -e au e au .lb n = 0 
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where 

For the first approximation, we choose: 
f ( u) = 1-u 

g(u) = 1 

K = K0 (~) =he , 

J = J0 (~) =me . 

Then equations (3.20), (3.21) and (3.22) respectively become: 

(3.23) 

(3.24) 

( 3. 25) 

For the lower region, we put circumflex (A) above all variables as 

before, and take the Oorodnitsyn transformation: 
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A 

(vmL) 1/2 
A 

A U an 
A T 

A VmL 2 ax - s v :::: + v-
U2Pe/Ps u ( )1/2 2 vs T 

A u u =u 
2 
A 

A 

m = m 

Using the same procedures that lead to equation (3.23), we get the 

following integral relation for the lower region: 

(3.26) 

Since u,s,T and m are continuous across the dividing streamline, we 

have four matching conditions. Together with the four integral 

relations (3.23), (3.24), (3.25), and (3.26), we have eight equations 

to solve for eight unknowns. 

The four matching conditions are: 

( 3. 27) 

(3.28) 

(3.29) 
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~ J ) ( A ) 
- 0 1-u m:::: mOO- 9 -A-

0 1-u0 

(3.30) 

Substituting these matching conditions into the equations (3.23), 

(3.24), (3.25), and (3.26) to eliminate the unknowns e0,00,R0, 

we obtain the following: 

All A12 0 0 

A21 A22 0 0 

0 A32 A33 O 

0 A42 0 A44 

where 

A11 = (l-u0)(1-u6) 

A12 = (3u0+1)(u0-1) 

. 
90 . 
uo . 
Jo . 
Ko 

2 2 2 A21 = (1-au 0)(1-a u0)/a 

= 

1 2 A22 = (- ~- 2u0 + 3au0)/9o 

A32 = - 2uoJo 

2 
A33 = 1 - uO 

A42 = - 2uoKo 

2 
A44 = 1 - uO 

81 

82 

83 

84 

81 = e(1-u0)(u0+3)(u0-1)90 + 2eK0(1-u0) + ~0 
2Jo 

B 2 = -2:.-----'--
90 (1-uo) 

( 3. 31) 
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Initial conditions are needed to solve the above system of differential 

equations (3.31). Since at~ = O,e0 = 0, we have a singularity at 

~ = 0. In order to avoid the singularity point, we integrate the 

equations starting at ~ = £, where £ is a small positive number. From 

the inviscid model, u1 (O) and u2(0) are found. Assuming that the 

pressure gradient has no effect in the vicinity of the leading edge, 

then the technique discussed in Section 2 can be applied to solve for 

e0, u0, J0 and K0 at ~ = £. We take these as the initial 

conditions and solve the system of differential equations numerically. 

With e0, u0, J0 and K0 determined for general ~, the velocity, 

temperature and H2S concentration can be found. 

Define the boundary layer thickness of the lower half-plane as the 

normal distance where the H2S concentration is 0.0002, which is 1% 

of that in the gas mixture. For comparison with the parallel injection 
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model, we use the same pipe diameter of 5 em and the same amount of 

steam, for an injection length of 5 em and injection velocity of 

30 em/sec. We find that the boundary layer hits the wall at a position 

17 em from the leading edge. The concentration of H2S at the wall 

is calculated and plotted in Figure 6. 

Section IV. Conclusion 

The Method of Integral Relations has been applied successfully to 

solve the present mixing problem. The accuracy of the solution 

increases with succeeding orders of approximation, but the calculations 

are increasingly complicated. In this paper only the first order of 

approximation is used. 

For large pipe diameter, say 1 meter, we can inject a layer 1 em 

thick. From the parallel injection analysis, an initial pipe length 

of approximately 32 meters is found to be protected from corrosion. 

For small pipe diameter, say 5 em, the usual pipe diameter in present 

coal gasification processes, only a thin layer can be injected. From 

the calculations in Section III, the concentration of H2S at the 

wall of the pipes was found to be reduced approximately 70 percent for 

an initial length of 6 m. 
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Table 1: Coal Gasifier Operating Environment 

Item Hygas Synthane - Con so 1 

Gas Composition: 
In Mole % 

H20 24 37 17 

co 7 11 14 

COz 4 18 6 

HzS 0.8 0.3 0.03 

H2 24 18 45 

CH4 13.3 15 17 

N2 0.3 0.5 0.2 

Gas Pressure 

Psig 1100 1000 300 

Gas Temperature oc 1000 1000 875 
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Figure Captions 

Figure 1. Coordinate system for parallel injection. 

Figure 2. Numerical solutions of velocity profile for parallel

injection model. 

Figure 3. Numerical solutions of H2S concentration profile for 

parallel-injection model. 

Figure 4. Coordinate system for normal injection. 

Figure 5. Diagram for inviscid analysis; uniform flow over a line 

source. 

Figure 6. Numerical solutions of H2S concentration at the wall of 

pipe for normal-injection model. 
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- Injection velocity= 75 em/sec 
---njection velocity= 500 em/sec 
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Figure 3 

- Injection velocity= 75 em/sec 
---Injection velocity=500 em/sec 
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Figure 6 
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Injection length = 5 em 

--- injection velocity= 10 em/sec 
-- injection velocity = 30 em/ sec 
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